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We consider the supercooled Stefan problem with a general anisotropic curvature- and 
velocity-dependent boundary condition on the moving interface. We present numerical 
methods, based on an integral equation formulation and including a new algorithm for 
moving curves with curvature-dependent velocity. These methods compute a periodic interface 
with O(dr) accuracy, where At is the time step. Previous work has been limited to short time 
spans and achieved slightly less than o(At”‘) accuracy. Accurate numerical results are seen 
to agree with the predictions of linear stability theory. This agreement has eluded previous 
authors, because their numerical methods suffered from grid effects and their linear stability 
theory was incorrect. We study the long-time evolution of an unstable interface. Our computa- 
tions exhibit the beginnings of a sidebranching instability when the boundary condition 
includes anisotropy and tip-splitting in the isotropic case. c 1989 Academic Press, Inc. 

INTRODUCTION 

Recently, there has been much interest in the supercooled Stefan problem with a 
curvature-dependent boundary condition on the phase interface, as a model for the 
spontaneous pattern formation believed to occur in dendritic solidification of a pure 
substance from an undercooled melt. This symmetric model was introduced in the 
metallurgical and physical literature [29, 36, 42-J; some recent works propose and 
study more general boundary conditions [6,26]. 

Most of the physical literature has studied the problem using asymptotic analysis, 
and applied numerical methods only to solve various approximate equations 
[2, 361. Numerical methods have been successfully applied to steady-state equa- 
tions [40,46] and to equations for smoothed interfaces [7, 191. Only a few authors 
have attempted to solve the full time-dependent problem [ 10, 48, 521, and it seems 
that none have computed the interface accurately in the nonlinear regime, where 
interesting phenomena like sidebranching [29], tip-splitting [43], and formation of 
cellular fronts [36] are presumed to occur. Even for small perturbations of simple 
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shapes evolving for short times, no quantitative agreement with linear stability 
theory has been demonstrated. 

In this paper, we present a numerical method for solving the supercooled Stefan 
problem in two space dimensions, with a general anisotropic curvature- and 
velocity-dependent temperature boundary condition on the phase interface. Our 
method is based on eliminating the temperature field and computing only the inter- 
face. There are two difficulties in this approach; first, computing the velocity 
requires solution of a nonlinear history-dependent singular integral equation on the 
moving boundary; second, moving a curve with curvature-dependent velocity is 
difficult even if the velocity is a simple function of curvature [47]. The first 
difficulty is easiest to understand in the simple case when the interface is the graph 
of a function: its resolution involves several new ideas. The second difficulty is 
resolved by a reformulation of the curve motion problem and a new numerical 
algorithm for solving the reformulated problem. 

Our method computes the interface with O(dt) accuracy, where At is the time 
step. This compares favorably with previous approaches, which achieve less than 
0( A t ‘12) accuracy, even for the simpler curvature-independent classical Stefan 
problem without supercooling. Our accurate numerical results agree with linear 
stability theory; such agreement has eluded previous authors. Previous authors 
were unable to obtain agreement between numerical results and linear stability 
theory because most numerical results suffer from grid effects (to be explained later) 
and because the linear stability theory with which they compared their results is not 
quantitatively accurate. We also use our method to carry out several long-time 
computations in which physically interesting phenomena occur. 

In Section 1, we review some previous theoretical and numerical work on this 
and related problems, and give references to derivations from nonequilibrium 
thermodynamics. Then we reformulate the moving boundary problem as a 
nonlinear history-dependent singular integral equation for the normal velocity of 
the interface. 

Section 2 contains a numerical method for computing the interface while it 
remains the .graph {X = s, y = y( t, s) 1 - CC < s < co } of a 2n-periodic function 
y(t, s). We deal with this simple case first because it allows us to learn how to solve 
the integral equation for the velocity, without worrying about how to move the 
curve. Of course, the boundary does not remain a graph forever, so this method is 
useful only for moderate time spans and moderate deformations of a flat interface. 
However, moderate time spans suffice to check agreement with linear stability 
theory. We also show experimentally that the numerical method is first-order 
accurate. 

Section 3 contains a numerical method for computing a general interface, no 
longer restricted to graphs. This includes a reformulation of the general problem 
of moving curves, as an evolution equation for the normal angle 4. Using this 
equation to move the boundary and computing the velocity V from the integral 
equation results in a complicated but reliable numerical method, which is lirst-order 
accurate and stable. We solve an additional ordinary differential equation to keep 
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track of arclength, and we introduce an algorithm which keeps points equally 
spaced on the curve without resdistribution. 

Our results show that the principle of computing only the moving boundary 
leads to an effective and accurate numerical method. Our computations exhibit 
sidebranching only when the boundary condition includes anisotropy, as predicted 
in [37]; we see a well-developed tip-splitting instability in the isotropic case. 

This paper is based on part of the author’s doctoral dissertation, “Numerical 
study of dendritic solidification,” written at the Department of Mathematics, 
University of California at Berkeley, under the supervision of Alexandre Chorin. 

1. SOME PREVIOUS WORK 

1.1. Physics 

Consider, for the sake of comparison with our problem, the melting of ice in 
water. This is a smooth, stable phenomenon, modeled by the classical two-phase 
Stefan problem: The temperature field u satisfies the heat equation 

8,~ = Au 

in each phase (water or ice) separately, the normal velocity is the jump in the 
normal component of heat flux, 

v= - [al&], 

across the interface, and the temperature on the interface is the equilibrium melting 
temperature; by a shift of origin in the temperature scale, u = 0 on the interface. The 
notation is explained in Section 2. With appropriate initial and boundary condi- 
tions for u, this is a fairly well-understood and mathematically well-posed problem, 
for which many results of existence, uniqueness, and regularity have been proven. 
Many of the more recent results [S] rely on the weak formulation introduced by 
Duvaut [ 151 and the theory of variational inequalities [35], but earlier work was 
done with integral equations, maximum principles, and other tools from the 
classical theory of partial differential equations [20,45]. 

In the physical situations with which we will be concerned, on the other hand, 
it often happens that the liquid phase is supercooled; u < 0 in the liquid phase. In 
practice, water can be cooled substantially below 0°C without freezing, if there is 
no “seed” to start the freezing process. A small disturbance can then begin a rapid 
and unstable change of phase, dendritic solidification. The large-scale shape of 
the resulting solid-for example, the diameter of a snowflake-is typically a 
reproducible function of a few physical parameters, but the detailed small-scale 
structure has a complex but organized appearance. Currently many workers [ll, 
37, 36, 33, 43, 2, 461 are interested in this problem of pattern formation. 

Supercooling of the liquid phase requires a re-examination of the assumptions 
and formulation of the classical Stefan problem. Classically, the water is the set 
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where u > 0, the ice is the set where u < 0, and the interface is the set where u = 0. 
When supercooling is present, however, a snapshot of the temperature field at any 
given time does not determine the interface, because u can be negative in either 
phase. Thus the only way we can keep track of the interface is by following it 
continuously in time. This requires that the interface itself move smoothly in time. 
Physically, this means that liquid can solidify only adjacent to preexisting solid. 

Unfortunately, both linear stability analysis [SO, 36, 42, 441 and rigorous theory 
[3] show that the interface does not remain smooth when the liquid is supercooled. 
Linear stability theory gives a growth exponent y(k) = V Ikl, where V is the velocity 
of the underlying flat interface and k is the wavenumber of the perturbation; distur- 
bances to a flat interface grow like eryck), with small wavelengths growing faster, so 
the interfacial structure becomes very complicated. Since a real snowflake, for 
example, exhibits a complicated structure only down to a certain length scale, 
below which the interface is microscopically smooth, this indicates that supercooled 
solidification is not well modelled by the classical Stefan problem. Furthermore, an 
analysis of the classical Stefan problem by Di Benedetto and Friedman shows that 
finite-time blowup occurs when the water is supercooled [3]. Hence modification 
of the classical Stefan problem is necessary, if we are to model supercooling of the 
liquid phase. 

The various modified models proposed usually differ from the classical Stefan 
problem only in the boundary condition u = 0 on the moving boundary; exceptions, 
however, are [56, 591. The most classical models include surface tension to assign 
the interface an energy proportional to its area and result in a curvature-dependent 
“Gibbs-Thomson relation” 

u= -&& (1) 

on the interface. Here E= is a small constant and C is the curvature of the interface, 
taken to be positive where the center of the osculating circle lies in the solid phase. 
More recently, several authors [26,6] have proposed anisotropic curvature- and 
velocity-dependent boundary conditions of the form 

u= -G-(~)C-~v(~)K (2) 

where 4 is the angle between the normal to the interface and a fixed axis and V is 
the normal velocity. Typically, 

sC(d)=sC(l -A cosk,d) 

where A E [0, 1) is the coefficient of anisotropy and k, is a small integer connected 
with the crystalline anisotropy of the solidifying substance. These relations involve 
the non-equilibrium concept of velocity and therefore cannot follow from equi- 
librium thermodynamics, unlike the curvature-dependent (but velocity-independent 
and isotropic) Gibbs-Thomson relation ( 1). 
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There are three theoretical frameworks within which the general boundary condi- 
tion (2) can be derived; the phase field model of phase transitions [6], 
Cahn-Hilliard theory [S], and thermodynamics with interfacial energy and entropy 
[26]. The first two approaches work with smoothed interfaces and microscopic 
models, extracting (2) in a singular limit; the last attempts to include sharp interfaces 
in thermodynamics. 

1.2. Existence Theory 

No rigorous existence and uniqueness results are known for the supercooled 
Stefan problem with the curvature-dependent boundary conditions (1.1 .l ) or 
(1.1.2). We describe, however, a local existence and uniqueness result for a simpler 
model problem, because it suggests the curve movement algorithm of our numerical 
method and because it seems likely that similar techniques could provide a local 
existence result for our problem. 

Consider the modified Stefan problem with an isotropic velocity-independent 
Gibbs-Thomson relation with Ed = 1, with the heat equation replaced by its steady 
state counterpart Au= 0, and with temperature variation in the solid phase 
neglected. The problem can then be stated in one sentence: A curue moves with 
velocity equal to the normal derivative of the harmonic function with boundary values 
equal to the curvature of the curve. 

Thus we seek a curve f(t) moving with normal velocity 

where AU = 0 above IJ t) and 
u=c on r(t). 

Here C is the curvature and v the normal of r(t). Consider the special situation in 
which r(t) is the graph (x = X, y = y(x) 1 - cc < x < cc } of a Lipschitz function y. 
Parametrize r(t) by arclength and let 4 be the angle between v and the y-axis. Let 
A = A, denote the Dirichlet-Neumann operator for r= r(t), defined for f E L2(r) 
by 

/if = aulav, 
where 

AU=0 above r 

U=f on r; 

thus the normal velocity is given as a functional of curvature by V= AC = A 04. 
One can then derive the following evolution equation for 4 (see [ 141 or Section 4 
for details); 

(?,&DAC=CjkKds’, C=Dd, (1) 0 
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with initial condition #(O, s) = &(s). This is a nonlinear third-order pseudodifferen- 
tial evolution equation, since /1 is a first-order pseudodifferential operator [53] 
acting on the usual Sobolev space H* = H’(r) consisting of square integrable 
functions on r with square integrable first and second distributional derivatives. Let 
141 oc = maxr 141. Then the following result holds: 

THEOREM (Duchon and Robert [ 141). Let & belong to H2, and Ido 1 co < n/2. 
(Thus r(O) is a Lipschitz graph.) Then there is T > 0 and 4 continuous from the inter- 
oal [0, T] into H2 satisfying (1) and having &O, s) = do(s). Furthermore, there is a 
ball in L”(0, T; Hz) in which the solution of (1) is unique. 

Extension of this theorem to our supercooled Stefan problem would require two 
steps. The first-inclusion of temperature variation in the solid phase-seems to 
present no additional difficulties, but the second-solution of the heat equation on 
a time-dependent domain-is much more difficult than the solution of the Laplace 
equation, which does not involve the previous history of the interface. Even the 
solution of the equation corresponding to (1) for 4 in terms of the right-hand side 
becomes a nontrivial undertaking, because ,4 acts on the time variable. 

However, this general viewpoint-in which the temperature field is treated as an 
intermediate step between the curvature and the normal velocity, rather than as an 
independent unknown-pervades the work of this paper. Our numerical methods 
are based on equations which involve only the moving boundary. 

1.3. Numerical Methods 

We briefly describe some of the many existing numerical methods for the 
curvature-independent classical Stefan problem without supercooling, to provide a 
background for our work on the curvature-dependent and supercooled case. 
A good general reference is the conference proceedings [SS], particularly [ l&12,41 1; 
these articles also describe many methods which we have omitted. 

Methods for the classical Stefan problem in more than one space dimension (the 
one-dimensional case is of little interest to us here) tend to fall into two general 
classes; front-tracking methods which follow the boundary explicitly and enthalpy 
methods which use a single-domain formulation. A general review of numerical 
methods for moving interfaces can be found in Hyman [30]. 

In front-tracking methods, the usual procedure is to solve the heat equation in 
each phase with zero Dirichlet data on r(t) by finite element or finite difference 
methods, compute an approximate normal velocity from the temperature field and 
an approximate normal by some method depending on the representation of the 
moving boundary, and move the boundary with the computed velocity. Variations 
on this procedure include solving with Neumann data and adjusting the boundary 
to be where u = 0, or using an implicit time discretization and iterating on the 
temperature and the boundary until the boundary location and velocity agree with 
those obtained from the temperature field. Front-tracking methods have been 
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applied to the classical Stefan problem by Meyer [41] and to several similar 
problems (e.g., Rayleigh-Taylor instability) by Glimm et al. [25]. 

In enthalpy methods, the Stefan problem is transformed to a single nonlinear 
heat equation of the form 8,~ = df(u), withfa step function, to hold weakly on the 
entire domain occupied by the two phases. After computing U, the boundary may 
be found, if desired, as the set {U = O}. Various methods have been proposed to 
solve 8,~ = df(u); Chorin [lo] reports numerical experiments with the simplest 
finite difference method. Berger et al. [4] derive similar finite difference methods in 
a very general framework; their methods are very simple to use but have rather 
large temperature field error estimates of the form O((dt log( 1 + T/dt))‘12), where 
At is the timestep and T is the time at which the error is bounded. Their numerical 
results show these estimates to be sharp. Alexander et al. [l] have applied moving 
finite elements to the enthalpy formulation. Other weak solution methods are 
presented in [55], with similar error estimates. 

Numerical methods for the curvature-dependent supercooled Stefan problem, 
however, are much more scarce. Smith [48] and Chorin [lo] have constructed 
methods based on the enthalpy formulation, but incorporating some type of front 
tracking to evaluate the curvature. Smith’s method suffered from grid effects; the 
shape of the computed interface is strongly and unphysically dependent on the 
orientation of the numerical grid used to solve the problem. Smith’s numerical 
results are thus not even qualitatively accurate in the presence of morphological 
instability and, in particular, do not agree with linear stability theory. Chorin [lo] 
introduced a partial volume representation [30] of the interface and an accurate 
curvature evaluation algorithm for curves given by partial volumes, but this did not 
remove the grid effects. In addition, both of these approaches are based on the 
enthalpy formulation and therefore are limited to O((At log( 1 + T/At))“‘) accuracy. 
Chorin’s numerical results indicate that this estimate is sharp. Recently, Sullivan et 
al. [52] have solved the problem using finite element methods on a moving mesh, 
but their results so far are limited to the case when the interface is the graph of a 
function and therefore cannot follow the interface into the nonlinear regime. The 
convergence rate of their method is unknown, and it is not clear whether they 
obtain quantitative agreement with linear stability theory. In view of the incorrect- 
ness of the theory (see Section 1.5 or [49, 503) such agreement would hardly be 
valuable. 

Thus it seems fair to say that there are no completely satisfactory methods for 
solving the supercooled Stefan problem with a general anisotropic curvature- and 
velocity-dependent boundary condition. This paper presents a first-order accurate 
method which can follow the interface far into the nonlinear regime. Our method 
is based on solving a boundary integral equation [39,40], and thus eliminates grid 
effects by eliminating the spatial grid; indeed, we eliminate the temperature field 
altogether. We must then solve a singular integral equation for the velocity of the 
moving boundary, but it turns out than this can be done quite accurately, with 
some attention to numerical details. Given the velocity, it is still not altogether 
trivial to move the curve, because the velocity is curvature-dependent. Sethian [47] 
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has exhibited some of the difficulties in moving curves with curvature-dependent 
velocity. We use a new algorithm involving an evolution equation for the normal 
angle, an ordinary differential equation for the arclength, and an algorithm which 
keeps points on the curve equidistant in arclength, to avoid the instability observed 
by Sethian. 

1.4. Classical Linear Stability Theory 

In this section, we review the results of the classical linear stability theory [42] 
of the isotropic velocity-independent Gibbs-Thomson relation 

u= -EC, 

following [SO]. Another approach to this analysis is presented in [44]. The predic- 
tions of this analysis will be compared with numerical results in Section 3. 

Consider the planar interface in lR2 parametrized by 

f(t): ( = vt, x=s), SER (1) 

with temperature field 

e ~ V(y- vt) 
4-T y, t) = o 

L 

- 1, y> vt 

y < vt/t, 
(2) 

independent of x. The interface moves into the liquid phase with positive velocity 
V, and the temperature field propagates without change of structure. 

Perturb this solution by adding temperature fields au, and 6u, in the solid 
and liquid phases, respectively, and let y = Vt + 6y(t, x) + 0(S2) be the resulting 
perturbed interface. Linearize the moving boundary problem by extending uL and 
us up to the unperturbed boundary as solutions of the heat equation, and using 
Taylor expansion to construct an effective boundary condition there. The classical 
theory should analyze the stability of exponential solutions of the form 

(3) 

by computing the linear stability exponent y, for all positive q and q’ and real k. 
Unfortunately, the dispersion relations fix q and q’ in terms of k (see [49, 50, 361). 
But to represent an arbitrary perturbation of the initial temperature field and inter- 
face requires three independent parameters, q, q’, and k. Thus we have too few 
degrees of freedom to carry out a complete stability analysis. Since the solution is 
stable if no modes grow, but unstable if any modes grow, we can reliably predict 
instability by this analysis, but not stability. 
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At any rate, for E = 0, the classical dispersion relations imply 

i 
+ V lkl, Ikl < V 

” = V Ikl, Ikl > V. 

Thus the classical theory predicts instability of all modes, for E = 0. 
For E > 0, on the other hand, one finds 

YI =dq+ VI-k2 

= &k2(Ek2 - V) + ( V- 2Ek2) Ikl ,/w. 

Asymptotically, 

y, -{Jm Vlkl, as k+O 
-k2, as k+co. 

(4) 

(5) 
(6) 

(7) 

Thus the classical theory predicts the stabilization of short waves by curvature- 
dependence. Unfortunately, this prediction applies only to certain specially 
constrained perturbations, in which q and q’ are determined by k (see [49, 50, 361). 

1.5. The Integral Equation Formulation 

In this section, we state the moving boundary problem and use heat potential 
theory to convert it to a singular integral equation for the interface alone. Then we 
summarize the results of the correct linear stability theory, following [49]. 

We are working with the following moving boundary problem: 

a,u=Au on Q(t) 

a,u=Au on B(t) 

[au/avl = - v on f(t) 

u= --%-(4)C-Ev(4)V on f(t) 

U-U, at co in each phase 

u = ug at t =O. 

(1) 

The notation is as follows: 

A is the Laplacian at + a, 

Q(t) is the solid phase at time t, 

fi(t) is its complement, the liquid phase, 

UCG is the temperature at cc in each phase, 
v = (cos 4, sin 4) is the outward unit normal to Q(t), 

c 1 denotes the difference between liquid and solid phase values, 
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f(t) 
V 

C 

4 

is the boundary bewteen Q(t) and d(t), 
is its normal velocity, positive if liquid is freezing, 
is its curvature, positive where the solid is convex, and 
is the angle between v and the y-axis. 

In the Gibbs-Thomson relation, we take anisotropic material parameters 

&~($h)=&~(1-Ac0sk,,$~) 

Ev(4)=Ev(l-Acosk,44), 

where .sC and sy are positive constants much less than unity, A is a constant 
between 0 and 1, and k, is a small integer describing the crystalline anisotropy of 
the substance under consideration. 

In this section, we transform the moving boundary problem (1) to a singular 
integral equation (2) involving only r(t) and the initial temperature field I(,,. Super- 
cooling is present in (2) only through the consistency requirement that u0 -+ U, at 
infinity. The procedure is straightforward. We use the free-space heat kernel 

e-11xl12/4~ 

K(x, ‘I= (~~~)n/z XEW, t>o, 

to express u in each phase as the sum of single, double, and initial layer heat poten- 
tials with densities au/&, U, and u,,, respectively. We use a jump formula for the 
double layer potential to evaluate each expression on f(t) and add the results. This 
procedure produces the integral equation 

K(x-x’, T-t) V(x’, t)dx’dt=O (2) 

for x on r(T). Here U is the free solution of the heat equation with initial data u,; 

u(x, i’-) = K * u,(x, T) = I,, K(x - x’, T) u,(x’) dx’, 

where * denotes convolution, and dx’ denotes the element of integration on r(t). 
This equation possesses nearly every possible complication: it is nonlinear (though 
quasilinear), history-dependent (through the dependence of SV on the previous 
history of the interface), and includes derivatives as well as integration over the 
curve. The Gibbs-Thomson relation produces a term resembling a nonlinear heat 
equation (for a parametrization of r(t)), while the release of latent heat generates 
the singular integro-differential term SV, which is nonlinear and history-dependent 
as well. The initial temperature field term U is merely a nonlinear forcing term, 
which adds little complexity by comparison. 

581/85/2-7 
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The derivation goes like this: Let T > 0 be fixed, and let x lie in Q(T). Fix 6 > 0 
and put 

f(x’, t) = K(x - x’, T- t + 6). 

Let 52, be the product set 

Q,=i;a(l). 
0 

Then the Green identity [32] implies that 

s 

T 

udf-fAu= 
s s 

af au 
QT 0 r(r) av 

U--f, 

and the divergence theorem on Q, reads 

jQ, a,(fu) = ja, fun,. 
T 

Here n, is the time component of the outward unit normal to QT, considered as a 
subset of OX2 x [w + : 

I 1 t= T, xeQ(T) 

-1 t=o, XEcqO) 
n, = 

O<t< T, xer(t). 

Add these two formulas, use the backward heat equation satisfied 
limit 6 + 0 to get 

byf, and take the 

(3) 

for x in Q(T). Repeat the calculation for the liquid phase; only the sign of the 
double integral changes; 

4x, T)= jacoIfuo + joT jr,,,fun, -f ;+u$ (4) 

for x in d(T). Now we need a jump formula for the double layer heat potential D 
defined by 

Dg(x, T) = joT jr,,, g(x’, t) g (x - x’, T- t) dx’ dt; 
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Dg is discontinuous across r(T). For r(t) smooth, it is shown formally in [SO] 
that 

C@Tl(x, T) = g(x, n (5) 

for x on f(T). A proof of (5) for r( 7’) independent of T appears in Fabes and 
Riviere [ 171; they use a Fourier transform in the time variable to reduce it to 
potential theory for the Laplace equation [21] in which the jump condition is well 
known. This case is easier than ours because there is no motion of the boundary: 
the Fourier transform approach fails at the first step when the boundary moves 
with time. A proof for r(T) time-dependent can be found in [24] for n = 1. 
Apparently no proof of the jump formula with r(t) time-dependent has been 
published for n > 1, so we will rely on the formal argument presented in [SO]. 

Thus apply the jump formula to evaluate the expressions (3) and (4) for u on 
Z(t) and add the results to get 

u(x, T) = s,* K(x -x’, T- t) u,(x’) 

T 

-1 I 0 r(r) 
K(x-x’, T-r) $ dx’dt [ 1 

for x on r(T). The boundary conditions now imply (2): 

44)C+~v(d)J’+ Vx, T)+JboT jr(,) K(x-x’, T-r) V(x’, t)dx’dz=O, (6) 

for x on r(T). 

Remarks. 1. Although K has a l/(T- t) singularity at t = T, the actual 
singularity of the integrand in the time integral is mollified to a square root by 
integration over the curve. To see this, we compute the asymptotic behavior of the 
curve integral as t -+ T. Parametrize f(t) by x(1, s), and let x = x(,S, T) E r(T). Then 
dx’ = dm ds and 

s K(x - x’, T-t) V(x’, t) dx’ 
r(l) 

= 
I 

m K(x-x’, T-t) V(s, t)dmds. 
-m 

It is easy to see that only a neighborhood of the singularity contributes, because K 
decays exponentially in the spatial variables. But in a small enough neighborhood 
of the singularity, the Taylor expansion 

I/x($ T)-x(s, t)l12=(S-s)* (x: +yf)+ Ilx(S, T)-x(S, t)/12+ ... 

58l;R5/2-7’ 
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holds with a negligible error. The second term, exponentiated, gives a s-independent 
factor in the integrand with the first term a Gaussian integral. The result is 
therefore 

K(x - x’, T- t) l’(x), 1) dx’ 

- K(llx(S, T) - x(X t)ll, T- f) J’(S, t) as t’ + t, (7) 

where on the right-hand side K denotes the one-space-dimensional heat kernel. 
2. To simplify the notation, introduce the single layer potential operator S 

defined by 

Wx, T) = Ior jr,,, K(x - x’, T- t) V(x’, t) dx’ dt (8) 

and write the integral equation as 

+C+ U(x, T)+(E~+S)V=O. (9) 

As an integral equation for L’, this is of the second kind when E,, # 0. Since first- 
kind equations with compact smoothing operators (as S is) are notoriously hard to 
solve, we expect velocity-dependence to make the solution of the integral equation 
easier. Taking E V # 0 can thus be thought of as a physically motivated reguluriza- 
tion of the E y = 0 problem. The velocity is therefore given in terms of Z(t) by 

v= -(&‘/ + S)-’ (.+C+ U), 

if E ,, + S is invertible in an appropriate function space. Fabes and Riviere [ 171 
show, for r(t) independent of t, that S is smoothing of order 1 in space and order 
i in time: If g is in Lp on the set 

then Sg has one space derivative in Lp(T,) and-in a sense we shall not make 
precise-half a time derivative in Lp(f T). They also show that E V + S is invertible 
on LP(rf) if and only if E, # 0. If E, vanishes, therefore, V loses one derivative’s 
worth of spatial regularity. Hence nontrivial velocity-dependence in the 
Gibbs-Thomson relation exerts a substantial smoothing effect on the interfacial 
velocity. 

Now we describe the correct stability theory, based on the integral equation 
formulation. The integral equation (1.56) has an exact solution for which the interface 
is a straight line given by (1.4.1) and the temperature field has the similarity form 
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with 

i 

-“y- 1 -EvV, 
uo(v)= ‘, 

Y>O 
v 

” ? yd0. 
(11) 

Here E v is evaluated at its minimum, 4 = 0. 
We compute the evolution of a small perturbation to the initial interface, subject 

to a small perturbation of the initial temperature field, within the framework of 
linear stability theory. Make a perturbation 6u,(x, y) of the initial temperature field 
uO(y), and let the resulting interface be parametrized by 

x( t, s) = s + O(h2) 

y(t,s)= Vf+6y,(t,s)+0(62). 

A calculation as in [SO] results in. a linear stability equation 

, e.(k2+ V2 

(2e,d,+2&,k2-V)g(t)+Jo J-&s)(~s+~)g(s)ds 

=e -W2+ V*/4)1 qt), 

where 

F(t)= -2e V2r14K * f( Vt, t) 

and we are studying the evolution of a single harmonic 

yl(t, s) = g(t)e”“. 

(12) 

(13) 

The change of unknown function 

G(t)=e (k* + “‘/4)t g(t) (14) 

produces a fractional differential equation 

[cD+b+D-1’2(D-u)] G(t)=F(t), (15) 

with constant coefficients 

a = k2 - V2/4, b=2c,k2- V--2~,k’-~,~, C=2Ev. (16) 

Here D = ~3, and D-li2 is the Riemann-Liouville fractional integral [38] defined by 

(17) 
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The fractional differential equation (15) can be solved explicitly if we take f of the 
form 

f(Y) = 
{ 

ube y’y, Y>O 
uoe~yy, Y<O 

(18) 

with q and q’ positive. By a Laplace transform, this implies the solution for the 
general case. F then becomes 

F(f) = -ub erfce(p’ J’;) - u0 erfce(p ,,/?) (19) 

with p = q + V/2, p’ = q’ - V/2. If G(p, t) is the solution corresponding to u0 = - 1, 
ub = 0, then G is given by 

G(t)= -u,G(p, t)-ubG(p’, t). 

Thus it suffices to consider 

(20) 

The second equality, derived by a change of variable, greatly simplifies the calcula- 
tion. 

The solution of (15) is as follows: We solve the c = 0 (no velocity dependence) 
case explicitly by “squaring” the operator in (15) to remove fractional derivatives 
(see [SO]). The result is an ordinary differential equation for the time-dependent 
amplitude g, whose solution is asymptotically a linear combination of exponentials 

g(t)- i gj(k)e’“‘, as t+co. 
r=l 

Thus, in the long-time limit, stability theory is reduced to the study of the 
exponents yi and amplitudes g,(k). It turns out that y, is briefly positive for small 
k and then decays like -k2 for large k. Unfortunately, y, N k4 as k + co, so it looks 
at first as though the interface is catstrophically unstable. However, a slight addi- 
tional calculation reveals that g2(k) vanishes identically for k above a cutoff k,.. 
Thus the high-k instability is indeed stabilized by the introduction of curvature 
dependence in the Gibbs-Thomson relation, just as predicted by the classical 
theory. The same picture appears in the case c >O of nontrivial velocity 
dependence, except that yi are now roots of a cubic rather than a quadratic. See [Sl 
or 491 for details, The algebra involved in exhibiting the cutoff directly becomes too 
formidable, but a calculation presented in [49] effectively bounds the cutoff from 
above. This calculation exhibits the stabilizing effect of velocity-dependence: the 
cutoff k,. is lowered even further. The effects of anisotropy, on the other hand, are 
much easier to include in the analysis. 
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It turns out that any instability is cut off by the vanishing of its coefficient 
whenever k exceeds a cutoff k,. bounded by 

V 
k?G2(1-A)FC.. (21) 

Thus, to summarize, linear stability analysis of the (approximately generic) planar 
constant-speed solution shows that the curvature-dependent Gibbs-Thomson 
relation replaces the catastrophic small-scale instability of the classical Stefan 
problem for supercooled water by a finite band of small-k unstable modes. Velocity 
dependence further narrows this band. Anisotropy tends to destabilize the situation, 
replacing sC and E v by (1 --A)+ and (1 -A)&,,. 

Note also that the integral equation approach gives results which agree with the 
classical theory onZy in the long-time limit. The relevance of this limit is not clear 
a priori, because linear stability theory is a small-amplitude paradigm and both 
calculations indicate that some modes are almost always growing. Thus the theory 
may well break down long before the long-time limit is approached; if this happens, 
the classical theory would be invalidated, but the new theory would not. 

2. NUMERICAL METHODS FOR PERIODIC GRAPHS 

2.1. Introduction 

This section contains a numerical method for computing the moving boundary 
r(t) when it is representable as the graph {x = s, y = y(t, s) 1 - cc <s < cc } of a 
2n-periodic function y(t, x) of x. Thus we compute an infinite periodic array of 
dendritic structures. After specializing the integral equation formulation to such a 
periodic graph, we discretize the curve, replacing it by a set of points. This produces 
a consistency condition on the time and space step sizes At and As. Then we present 
a heuristic analysis which exhibits the importance of the high-wavenumber behavior 
of the curvature approximation. The interface can be destabilized by a local 
curvature discretization if As is too large; we use the discrete Fourier transform to 
construct a discretization of curvature which avoids this difficulty. 

We discretize the problem in time next, working first with the planar case, when 
the interface is flat. After using the understanding gained from the planar case to 
discretize the full periodic equation of motion, we present numerical results which 
demonstrate first-order accuracy of the method and agree with the linear stability 
theory presented in Section 1.5. Our results disagree with the classical linear 
stability theory. 

Working first with periodic graphs allows us to learn how to compute the 
velocity without worrying about the complications of moving a general curve; 
general curves are considered in Section 3. In general, we study each part of our 
method in a simple situation where analysis is easy. 
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2.2. The Periodic Graph Equation of Motion 

In Section 1.5, we derived the integral equation 

dd)C+Ev(d) If+ U(x, f) 

+ s: L,, K(x - x’, t - t’) V(x’, t’) dx’ dt’ = 0 

for a parametrization x = x( t, s) of f(t). Primes denote evaluation at primed 
variables, and dx’ is the element of integration on r(t’). While r(t) remains a 
periodic graph, we can work with the special parametrization 

x=s 

where y is 2rc-periodic in s. Then the curvature, normal velocity, and element of 
arclength are given by [9, 571 

c= -a, ys 
X/m 

(2) 

dx’ = dm ds’. 

Periodicity makes the problem simpler by restricting the variable s to a finite 
interval. Indeed, if y is 2x-periodic then 

i m K(s-s’, y-y’, t-t’)a,yw 
-m 

= ‘f jn K(s-(2m+s’), y- y’, t-t’)a,y’ds’ 
-m -z 

= 
I 

n O(s-s’,t-t’)K(y-y’,t-t’)a,y’ds’, 
-7c 

where 0 is the Jacobi theta function [16] or periodic heat kernel [32] defined by 

Q(s, t) = f. K(s + 2mc, t) (4) 
-02 

and K is now the one-dimensional Gauss kernel. Thus the integral equation 
becomes 

%44)C+Ev(4)~+ U(x, t) 

+ j; j:, Q(s-- s’, t - t’) K( y - y’, t - t’) a, y’ ds’ dt’ = 0, (5) 

to hold for - rc Q s < x, with periodic boundary conditions. 
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The elementary properties of the theta function which we shall need all flow from 
the Poisson summation formula [16]. As an example, we derive an efficient 
algorithm for evaluating 0 numerically. The sum (4) converges very fast for small 
t, since then 

~ x=/41 

zqx, t) = e 

JG 
(6) 

decays very fast as x -+ co. For t large, however, convergence is extremely slow. 
Thus we use the Poisson summation formula 

to transform the sum (4) defining 0. Herepdenotes the Fourier transform 

f(k) = i”, t?““f(x) dx, 

so that for each fixed t, evaluation of a Gaussian integral gives 

Hence 0 is also given by 

@(s, t) = & f p/r, 
-cc 

which is its Fourier series representation. The error in truncating the series (7) after 
terms with Ikl = N- 1 can be bounded by a geometric series; we have 

Similarly, for IsI <27r and ]nJ 3N+ 1, we have (.s+~~~c)~>~K~ZV(I~] -1). Hence 
the error in truncating (4) after terms with InI = N is bounded by 

The two error bounds are equal when t = 7c, which suggests the following 



360 

ALGORITHM. 

JOHN STRAIN 

if t<z then 

else if t > z then 

Its absolute error is bounded by 

(8) 

which is less that 3. 10P1’ for t > lop4 and N= 3. Thus 0 can be evaluated at the 
cost of half a dozen exponentials, with enough accuracy for our purposes. This is 
important, because the major cost of our numerical method will be evaluation of 
the single layer potential, which requires many evaluations of 0. 

2.3. Curve Discretization 

In this section, we discretize the periodic integral equation (2.2.5) in the spatial 
variable s to produce a semidiscrete equation of motion. Let s, = j As = jn/J with 
-J 6 j < J, and let y,(t) approximate y( t, sj). Replace C and V by 

(1) 

(2) 

where D is a discrete approximation of a,Y, left unspecified for moment. 
Next, replace the s’-integral by a numerical integration rule. Because of peri- 

odicity, the trapezoidal rule is attractive. But O(s, t) becomes a point mass 6(s) as 
t -+ 0, so we cannot use a trapezoidal sum all the way up to t’ = t. Hence we study 
the error in the trapezoidal rule approximation to the convolution 8 * g; 

; it O(s - si, t) g(sj) s 0 * g(s, t) = jn O(s -s’, t) g(s’) ds’. 
-J -n 

Here J is a positive integer, sj = j As = jx/J, and the prime on the sum means that 
the first and last terms of the sum are halved. 

By a Fourier series expansion, it is enough to analyze the error for exponentials 
g(s) = eiks with integer wavenumber k. Then by the geometric series formula 

; i, eiks, = 2~ k = 0 (mod 25) 

-J 0, otherwise, 
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the trapezoidal approximation (3) becomes 

-k%+ C e-(k+2Jn)Zre2J,nJ . 

n#O 

(Incidentally, it follows that exponentials are eigenfunctions of the discrete 
O-kernel, since the parenthesized term on the right of (5) is independent ofj when 
s is restricted to the set (sjl -Jdj< J}. This will be useful in the next section.) 
Rearranging the exponents shows that (5) is equal to 

epk2’eik”2n0(2J(s + ikt), 4J’t) = 0 * g(s, t) + O(ep4J2t) as J2t-+ co, (6) 

= O(l/fi) as J2t+0, (7) 

Thus the trapezoidal sum approximates 0 * g with an error which decays exponen- 
tially as J2t + co, but blows up like l/n as J2t + 0. Hence we can use the 
trapezoidal rule up to a time cutoff At away from t’ = t, if we arrange to have 
J2 At + cc as the mesh size and cutoff are relined. 

Now we return to our real interest, the integral 

s 
II 

K(y - y’, t - t’) O(s -s’, t - t’) a, y(s’, t’) ds’. (8) 
--n 

The previous analysis suggests the following procedure: Approximate (8) by the 
trapezoidal rule for t’< t-At, for some cutoff At. For t’> t-At, replace (8) by its 
asymptotic value (1.5.7); 

I 
77 

K( y - y’, t - t’) O(s - s’, t - t’) d, y(s’, t’) ds’ 
--n 

as t’ + t. 

N K(Y(f, s) - y(t’, .y), t - t’) 8, y(f, $1 

Finally, substitute the discrete curvature and velocity (1) and (2) and this 
approximation of the s’-integral (8) into the periodic graph equation of motion 
(2.2.5) to get the semidiscrete equation of motion 

'CC, +&V vj + u(sj, Yj, l) 

As i’ O(sj - +,t-t’)K(yi-y;,t-t’)&y;dt 
-J 

I 
f + K( y, - y;, t - t’) 8, y; dt’ = 0. 
I-Al 

Consistency requires that J2 At + co as J+ co, At -+ 0. We usually satisfy this 
condition by setting J At = 1. 
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2.4. Curvature Distretization and Linear Stability 

In this section, we analyze the effect of curvature discretization on the linear 
stability of the interface, and thereby construct an appropriate curvature 
approximation. Let E y = 0 for ease of calculation, so the semidiscrete equation is 

&CCj + u(sj, Yjt t, 

O(s, -Sk, t- t’)K(y,- y;, t- t')a,y; dt’ 

+I’ K(yj-y.;, t-t’)a,y,!dt’=O. (1) 
r--Al 

The flat interface is given by y(t, S) = Vt. This solution satisfies the semidiscrete 
equation (1) up to a residual R satisfying 

I 
,-Al 

O<R= K(?‘(t-t’),t-t’)?’ As&s,-s,, 
[ 

t-t’)- 1 dt’ 
0 -J 1 

K( k’s, s) ds = O(em4@“) (2) 

as Jz At + co. In this section, we ignore errors of exponential order in J* At, assuming 
J* At is fairly large. Because these errors are precisely those due to numerical 
integration over the curve, this is equivalent to studying the exact periodic graph 
equation (2.2.5) with curvature C replaced by 

and not discretizing the curve itself. As in Section 1.5, consider a perturbed solution 

UOb> Y) = Uo(Y) +%(x9 Y) 

y,(t)= Vt+dy,(t). 

Let L be the linearized discrete curvature operator; 

Ly, = lim cj(6)- 'j(O) 
I 

6-O 6 
= -D*y,, 

so that 

c, = 6Ly, + O(P) 
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as 6 -+ 0. Then the linear stability equation is 

&CLYjtt) + Yj(?) ay uO(vf/t, t, + ul(sj3 vt, t, 

+J 

l-Al 

As&qV(t-t’),r-t’) 
0 

x &y;-+yj-y;) 
[ 

,: 

1 O(s,-s,,t-t’)dt’ 

+L K(V(t-t’),t-t’) &y;-;(r;-y;) dt’=O, 
c 1 

where U, and U, are the zero-order and first-order temperature fields defined in 
[49, 511. In the previous section, we saw that 

As it e”9Q(sj - skr t) = epk2’eikSI( 1 + O(ep4’*‘)), 
-J 

with the last factor independent ofj. Hence we can still produce separated solutions 
of the form 

u,(x, Y) = e”“f(y) 

y,(t) = eik9g(t). 

The reduced equation for g is then, modulo terms of order eP4J2f, 

(2~~~-V)g(t)+/‘~-‘*~+‘~‘~“‘-~‘(d~+~)g(s)ds=F(t), 
0 J;ro 

where F is given by (1.5.13) and i; is the symbol of the linearized curvature 
operator L; 

2 = e - iks,,reiks,, 

where L acts on sL This is the same as Eq. (1.5.12) in the exact theory, except that 
k2 is replaced by L in the first term. Hence we can repeat the calculation described 
in Section 1.5 to get a discrete exponent 

y; = 2sc2(sC2 - I’) + (V- 2~2) ,/k2 + E&E~~! - V). 

The exact exponent, by comparison, is given by (1.4.6), restricted to integer k by 
2n-periodicity: 

y, = 2~,k2(r,k2 - V) + (V- 2e,k*) Jk2 + c,k2(.zCk2 - V). 

Almost any reasonable curvature approximation will have E(k)- k2 and 
therefore y ; -+ y, , for each k, as J+ co. But finite difference approximations to C 
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typically represent low-k behavior of the exact symbol k2 much better than high-k 
behavior. This causes trouble for Ikl near J. Consider, for example, the simplest 
finite difference approximation to the curvature; let 

D+D- Yj 
‘I= -(l +D+ Y;)~‘~’ (3) 

where D + are the usual (periodic) finite difference approximations to the derivative 
a,,. Then-L= -D, Dm and 

L = 4 $ sin2(nk/2J). 

As J-+ co, L + k2 for any fixed k. However, for J fixed and .sC of any reasonable 
size, the numerical and exact dispersion relations can have very different behavior 
for IkJ near J; see Fig. la. The finite difference approximation (3) can produce a 
catastrophic small-scale instability, if ds is not small enough. This can be cured by 
taking a finer mesh, as in Fig. lb. Nevertheless, this phenomenon reflects a rather 
unpleasant sensitivity to discretization of the supercooled Stefan problem, perhaps 
tending to confirm the misgivings put forth in [lo]. 

Thus it is essential to have a curvature approximation for which the linearized 
curvature operator has the right symbol k2, or at least a symbol which-substituted 
into j,damps those modes which should be damped. The simplest way to do this 
is to take 

(4) 

where D is designed to have symbol ik. (Equivalently, Ci is the exact curvature of 
a trigonometric polynomial interpolating the points (sj, y,).) To do this, represent 
yi by the trapezoidal discrete Fourier transform pair [ 311 

(5) 

(6) 

FIG. 1. Exact and discrete linear stability exponents y,(k) and j,(k). On the left, tC =O.OOl, J= 30, 
and the numerical approximation introduces a small-case instability. On the right, cc =O.OOl, but 
J= 100; this is enough points to damp the instability. 
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Define Da, for CI = 1 or 2, by requiring 6 = (ik)‘; 

so that D/“k are the trapezoidal matrix elements of D”. Some tedious algebra involving 
sums of finite geometric series shows that 

j#k 

Djk = 0, j=k 

Df =(-l)jpk+' csc2 
Jk 2 j#k 

(7) 

D,fk = -i(l +2J2), j= k. 

Now this method will have the right linearized behavior, if the consistency 
condition 

J=At+oO as J-+co,At-+O (8) 

is satisfied. To get a reasonable approximation to a given physical situation with a 
practical J, we will need to capture at least all growing modes. For VE 4 1, the 
exponent y, changes sign when k2 E V/2&,-, so we require JZ dm to get a 
reasonable approximation. Typical test parameters [ 10, 521 like V= 1, sC = 0.01 
require 53 7 which is not hard to satisfy. Velocity dependence weakens this 
requirement, but a nonzero coefficient of anisotropy A makes it more stringent by 
replacing sC with (1 --A)&=. Thus in general we need roughly [see (1.5.21)] 

V 
J222(l --A)+ 

to capture all growing modes, assuming sC and E,, are much smaller than unity. 

2.5. Time Discretization 

So far we have discretized the spatial variable and found out how to get the right 
linearized behavior, if the consistency condition (2.4.8) is satisfied. Now we 
discretize the time variable. It is helpful to begin with the planar case, i.e., with the 
periodic graph equation specialized to y(t, s) independent of s, 

Eva,y(t)+ U(y(t), t)+j’K(y(t)- y(t’), t-t’)a,y(t’)dt’=O. 
0 

(1) 
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(Here ay is evaluated at $ = 0.) Since curve discretization effects are not present, 
this allows us to study time discretization in a simpler environment than the full 
equation (2.3.9). A time discretization method which fails here can presumably be 
eliminated, though one which works here may still fail in the general case. 

To produce a time discretization, replace y by a continuous piecewise linear 
approximation; let 

y(t) r y” + !2$py.+l-y”)=y”+” 

for nAt<t=(n+cr)AtQ(n+l)At (2) 

and require (1) to hold at the mesh points t = n At. The resulting numerical equations 
are 

+Yn- Y”-’ n-l 

At 
+U(y”,nAt)+ c (y”+‘-y”) 

III=0 

s 

I 
X K(y”- ym+l, (n-m-cc)At)dcr=O. 

0 
(3) 

We must also choose some method of evaluating the weights 

s I K(y” - y”+“, (n-m-a) At)dx (4) 
0 

because only the top weight, with m = n - 1, can be evaluated in closed form. (It is 
simply 

’ “P,erf(yn$L*) 
Y”-Y 

where 

is the error function.) We choose to evaluate them by Gaussian quadrature [13] 
for m < II - 2. Satisfactory error bounds can be given for evaluating (4) by Gaussian 
quadrature, because the integrands in (4) with m <n-2 have the square-root 
singularity of K sufficiently distant from the interval of integration. The importance 
of accurate weight evaluation is well known in the theory of numerical solution of 
integral equations; see [28]. It is thus a stroke of good fortune that the top weight, 
which contains the singularity of the single layer potential, can be evaluated in 
closed form. 
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We can then solve the equation 

,“Yn-Y”-l 
At 

+U(y”,nAt)+erf(y”~~l)+~~~(y”‘l-ym) 

s 

1 

X K(y”- Y”‘+~, (n-m-a) At)dcc=O. 
0 

for y”, at each time step. Newton’s method is suitable for this. 
We found this method to be stable and at least first-order accurate, with suf- 

ficiently accurate weight evaluation; typically 6-point Gaussian quadrature sufficed 
for this. Newton’s method converges quickly, taking no more than five iterations to 
reduce the residual below lo-” in double precision (1Cdigit) arithmetic. We 
carried out numerical experiments using the Neumann solution [27]. Results 
indicate that this time discretization method has 0(At3”) error; since we have a 
first-order accurate spatial discretization, this suflices for our purposes. See [51] for 
details. 

This time discretization method can now be applied to the periodic graph equation 
of motion. Let 

for nAt<t=(n+a)Atd(n+l)At (5) 

be a continuous piecewise linear approximation of y,(t). Substitute (5) into (2.3.9) 
and require the equation to hold at the mesh points t = n At. The result is the 
discrete equation of motion 

s,Ci+sVVi+U(Si, y;,nAt)+erf().L-5’) 

n-2 

+ 1 A&y;+’ 
lW=O -J 

- y;)il’ O(s, -sj, (n-m-u) At) 

x K(y;- yjm+‘, (n-m-cc) At)&=O. 

The weights can again be evaluated by Gaussian quadrature, the curvature and 
velocity are built with the derivative approximation D of the previous section, and 
consistency requires J2 At + co as J--f co, At + 0. 

Attention to several computational details can dramatically improve efficiency. 
First, note that the O-function values are fixed once we fix the time step, the mesh 
size, and the number of Gaussian quadrature points. Since they are used again and 
again, and each value is as expensive as half a dozen exponentials or trigonometric 
functions, a great increase in speed can be had by evaluating them at the beginning 
of the computation and storing them in an array. Next, it is very inexpensive to use 
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Newton’s method for solving the nonlinear system (6) for y,” at time step n. This is 
because once we have the O-function values and exponentials necessary to evaluate 
(6), we can use them simultaneously to evaluate the Jacobian. The O-function 
values are the same in (6) and in its Jacobian, while the exponentials are simply 
related. This general situation-in which it costs very little to evaluate the Jacobian 
once the function itself has been evaluated-will recur in Section 4, though precom- 
putation of 0 will not be possible then. And finally, it is also important to evaluate 
the error functions quickly and accurately. For this, we used Gautschi’s algorithm 
[22], which relies on a power series expansion of erfce for small arguments and on 
Legendre’s continued fraction for large arguments. The resulting values were 
spot-checked against 12-digit tables. 

In our computations, we took symmetric initial conditions and used symmetry of 
the solution to compute only the side of the curve corresponding to s > 0, effectively 
cutting J in half. Since the cost of the method is 

O(N2P1) + O(NJ3), 

this reduces the total cost of the computation by a factor of 4. 

2.6. Numerical Results 

This section describes two numerical experiments with the method described in 
Section 2.5. In the first experiment, we compute the evolution of a cosine perturba- 
tion to a flat interface, compare the growth of the perturbation with that predicted 
by linear stability theory, and demonstrate the first-order convergence rate of the 
method by analyzing the variation of the solution with mesh size. In the second 
experiment, we study the evolution of an theta-function bump on a flat interface 
and again establish first-order convergence. In both cases, the solutions fail to 
converge after a certain time, when the gradients become too large. We see this as 
evidence of breakdown of a fundamental assumption of the periodic graph formula- 
tion; eventually, the interface is not a graph. 

For the cosine perturbation, we took initial data yO(s) = g, cos(ks) and initial 
temperature field 

where 

%b~ Y) = U”(Y) +.f(y ) cos(kx), (1) 

f(Y) = 1 ;;;;o” y > 0, 
y < 0, 

and uO( y) is given in (1.5.11). The forcing term is then 

U(x, y, t) = U,( y, t) + ubepk2’ cos(kx) F( y, t, q’) 

+ u,epk2’ cos(kx) F( - y, t, q), 
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where U0 = K * u0 and 

24-Y F(y, I,p)=ie-y214’erfce ~ 
( 1 Jr 

(3) 

A moment’s calculation shows that ay U blows up like l/fi as t + 0 unless the 
initial temperature field is continuous; u 0 = ub. Consistency of the initial interface 
and temperature perturbations requires (according to the calculation described in 
Section 1.5) that 

z.+)=u~= -+(2&,k2-V)g, (4) 

if E V = 0. In this section, we take E V = 0 for simplicity. This is a more stringent test 
of our numerical method, because there is no velocity smoothing present. 

First, we measured the convergence rate of the numerical method. We fixed the 
physical parameters 

q=q’= v= 1, EC =o.ol, Ey =o, g, = 0.02, k = 4, 

so that the cosine grows with the maximum exponent y, = 2.43975 = maxk y,(k), 
and computed up to t = 1.5, with numerical parameters 

J= 16, 32,64, 128, N = 24,48, 96, 192, 

and I= 4, 6, 8, 10 Gaussian quadrature points per weight. The evolution is shown 
in Fig. 2, for the solution with J= 64; the final amplitude has increased by a factor 
of 50. 

Since we do not know the exact solution, we estimate the error by studying the 
variation of the solution with successive halvings of the mesh size and time step. 
Table I displays the max-norm differences 

max y$ (2J) - y,“(J) 
i (5) 

of the computed solution y,“(J), as a function of time t and the number of points 
J. The halving of the differences as the mesh size is halved indicates first-order 
convergence; 

y;(J) = y(n At, j As) + As .e(n At, j As) + O(As’), (6) 

FIG. 2. Evolution of cosine graph. The physical parameters are E c=O.Ol, V=q=q’= 1. The initial 
state has g, = 0.02, k = 4. The final state (computed with J= 64 and N = 96) has T= 1.5. The black 
region is ice, the white region is water. 
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TABLE I 

Max-Norm Differences for Cosine Graph 

t 32-16 6432 128-64 (W2tW16) (128/64-(64-32) 

0.125 0.00068 0.00040 0.00017 0.000115 0.000083 
0.25 0.00230 0.00137 0.00062 o.cQO442 0.000180 
0.375 0.00484 0.00298 0.00138 0.001114 0.000362 
0.5 0.00869 0.00556 0.00264 0.002424 0.000708 
0.625 0.01452 0.0097 1 0.00474 0.004896 0.001364 
0.75 0.02330 0.01641 0.00827 0.009518 0.002624 
0.875 0.03661 0.02742 0.01438 0.018235 0.005063 
1.0 0.05704 0.04607 0.02538 0.03509 1 0.009816 
1.125 0.08905 0.07900 0.04639 0.068942 0.021613 
1.25 0.14039 0.14029 0.09015 0.140196 0.052824 
1.375 0.22439 0.26210 0.19676 0.299807 0.131695 
1.5 0.36218 0.52664 0.53837 0.691104 0.550101 

Note. V=l, sc=O.O1, sy=0,gO=0.02, k=4, q=q’=l. 

where J At = 1, y(t, s) is the exact solution, and e is an unknown smooth function 
of t and s. Hence we can build a second-order accurate solution by Richardson 
extrapolation [3 11: 

F; = 2y$ (24 - yj” (J) = y(n At, j As) + O(As’). (7) 

The last two columns of Table I exhibit the maximum differences of the 
extrapolated solution 7. There is some improvement in convergence, though the 
rate never quite reaches @At’). But the final extrapolated solution is accurate to 
three digits all the way up to t = 1, as far as we can tell by examining differences. 

Next we compare the extrapolated results with the prediction 

y( t, s) = Vt + g(t) cos ks + O( g;) 

of linear stability theory. Here g(t) is the solution of the linear stability equation 
(1.5.12). Since g(t) is not an exponential, comparison with linear theory is com- 
plicated and requires comparison of the computed and exact functions g(t) for a 
range of t, not just comparison of the computed and exact linear stability exponents 
y, . For simplicity, we took E y = 0 (E y # 0 requires slightly more programming) and 
calculated the exact g(t) by applying the second-order Runge-Kutta method [23] 
to the ordinary differential equation equivalent to (1.5.12). For the computed g(t), 
we measured the amplitude 

g=&(max Jk -min Jk) (8) 

of the extrapolated solution J. Figure 2 shows that an initial cosine wave remains 
a cosine with considerable fidelity. Clearly no other modes are being excited to any 
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significant extent, despite the nonlinearity of the problem. Thus th,e crude method 
(8) of amplitude fitting is reasonable. 

Table II exhibits the results, for k = 1, 4, and 7. For each k, we tabulated the 
numerical and exact amplitudes 2 and g, as well as the ratio between g and the 
prediction gOefY1 of the classical linear stability theory reviewed in Section 1.4. Each 
entry in Table II is accurate to within two units in the last place, as estimated by 
measuring differences. The k = 1 column exhibits remarkably close agreement 
between g = 2, while the classical prediction is in error by as much as 25%. 
(Though the classical theory gets the right exponent, the amplitude is strongly 
affected by short-term transients neglected in the classical theory.) In this slow- 
growth situation, g behaves quite differently from an exponential. 

In the k = 4 column, the entries increase much faster; the exponent y, here 
reaches its maximum over k. Thus linear theory cannot be expected to be accurate 
very long-and in fact it is good even to one digit only up to about t = 1.25. Our 
method breaks down then as well, to some extent; presumably the interface 
develops excessively large gradients, because it is about to stop being the graph of 
a single-valued function. 

For k = 7, both theories agree well with the computed results, perhaps because 
the perturbation is decaying slowly and smoothly. 

TABLE II 

Comparison with Linear Stability Theory 

k=l k=4 k=7 
y, = 0.0955337 y, = 2.43975 y, = -0.360157 

16x t s R gl&wJ” 2 g dk%e”’ s g g/m”” 

0 

2 

4 

6 

8 
10 
12 
14 
16 
18 
20 
22 
24 

0.02000 0.02000 1.00 
0.02022 0.02022 0.95 
0.02067 0.02066 0.92 
0.02127 0.02126 0.89 
0.02200 0.02199 0.87 
0.02285 0.02285 0.85 
0.02382 0.0238 1 0.83 
0.02490 0.02490 0.82 
0.02610 0.02609 0.81 
0.0288 0.0288 1 0.79 
0.0320 0.03200 0.78 
0.0357 0.03569 0.77 
0.0399 0.03992 0.77 
0.0448 0.04474 0.76 
0.0503 0.5023 0.76 
0.0565 0.05644 0.76 
0.0635 0.06348 0.76 

0.0200 
0.0219 
0.0253 
0.0294 
0.0343 
0.0400 
0.0467 
0.0546 
0.0638 
0.087 
0.12 
0.17 
0.23 
0.3 
0.5 

0.0200 1.00 0.020 0.0200 1.00 
0.0219 0.94 0.019 0.0194 0.99 
0.0252 0.93 0.019 0.0189 0.99 
0.0293 0.93 0.019 0.0185 0.99 
0.0341 0.93 0.018 0.0181 0.99 
0.0397 0.93 0.018 0.0177 0.99 
0.0462 0.93 0.018 0.0173 0.99 
0.0539 0.93 0.017 0.0169 0.99 
0.0627 0.93 0.017 0.0165 0.99 
0.0851 0.93 0.016 0.0158 0.99 
0.1154 0.93 0.016 0.0151 0.99 
0.1566 0.93 0.015 0.0144 0.99 
0.2124 0.93 0.015 0.0138 0.99 
0.288 0.93 0.014 0.0131 0.98 
0.391 0.93 0.014 0.0126 0.98 
0.530 0.93 0.013 0.0120 0.98 
0.719 0.93 0.012 0.0115 0.98 

Note. +=O.Ol, a,,=O, V=l, A=O,g,=0.02. 
y The extrapolated values for k = 4 and I > 1.25 are not converging swiftly enough to guarantee one 

good digit (g and 2 are accurate within 2 units in the last digit shown). 

58118512-E 
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In the second experiment, we computed the evolution of an initial O-function 
bump 

J&) = Q(0, 6) JL Q(s, 6) 

on a flat interface. (The coefficient is chosen to make the maximum amplitude of 
the initial data equal to go.) An approximately consistent initial temperature field 
perturbation can be constructed via linear stability theory, for small go: Decompose 
0 into its Fourier components, construct a consistent initial temperature field 
perturbation for each component by linear stability theory, as in the first experiment, 
and add up the results to get 

24,(x, y) = uo(y) + epYIYl ( 2 ++a:) Ye(x). _v 

Here we assume q = q’, E,, = 0, for simplicity. The forcing term is easily computed, 
because we chose Q-function initial data, 

F is given in (3). Figure 3 displays a sample result from a computation with 

6 = 0.05, go = 0.02, q=q’=T/=l, 

and an isotropic velocity-independent Gibbs-Thomson relation with .sC = 0.01. We 
computed the solution with 

J= 16, 32, 64, 128 points 

and 

N = 24,48, 96, 192 time steps 

up to time t = 1.5, using I= 4, 6, 8, and 10 Gaussian quadrature points. Again, the 
convergence was monotone and Richardson extrapolation gave a roughly second- 

LLILI 
FIG. 3. Evolution of bump graph. The physical parameters are Ed = 0.01, 6 = 0.05, g, = 0.02: The 

initial state is an almost invisible bump on a flat interface. We computed with J = 64 points and N = 96 
time steps up to time T= 1.5. 
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order solution up to time t = 1. The full computation required 30 min of Cray 
X-MP CPU time, and we believe the final extrapolated solution to have three digit 
accuracy until t = 1.5. 

Physically, there are two interesting features of the solution: First, the accuracy 
with which the flat ends of the interface move with the unperturbed velocity I’. 
Thus a localized bump propagates slowly. Second, the depressions which form at 
each side of the central bump. These are not predicted by any physical argument 
known to us: they indicate that ice is melting immediately adjacent to the bump 
where water is freezing, a significant effect of curvature dependence. 

3. NUMERICAL METHODS FOR GENERAL PERIODIC FRONTS 

3.1. Introduction 

Section 3 contains a numerical method for computing an arclength parametriza- 
tion of f(t). This method does not require f(t) to be the graph of a function. It 
takes advantage of a natural conserved quantity, the arclength deviation Q = 
1 - (x,)’ - ( Y,)~ to eliminate x and y in favor of the new unknowns I’ and 4. Our 
numerical method conserves a natural analogue to Q, the scaled distance between 
one points and the next, by reconstructing x and y from V and 4 in a special way. 
We calculate V from the integral equation and solve an evolution equation for the 
normal angle 4. A slight additional calculation is necessary to keep track of the 
arclength of one branch of the periodic curve. 

The following algorithm may seem more natural: Put a set of marker points on 
the curve, evaluate the velocity at each point, and move each point along an 
approximation to the normal. This amounts to solving the equation x, = Vv for a 
non-arclength parametrization x of f(t). However, Sethian [47] has described the 
difficulties in this approach when the velocity is a simple local function of 
curvature, 

v= 1 -EC. 

(We cannot expect our much more complicated velocity to behave better.) Sethian 
observes that marker points tend to spread far apart in regions of larger curvature, 
where they are most needed to resolve sharp changes in the solution, and bunch up 
in flat areas, where they are least necessary. In the flat areas, a stability constraint 
of the usual kind At/As 6 const then requires expensively small time steps. Another 
kind of spreading difficulty occurs, for example, when a bump is growing upward. 
On each side of the bump, the normal points sideways. Hence any algorithm which 
moves points only along the normal can only move a point on the side of the bump 
a short distance. Since points are not allowed to slide along the curve, they must 
inevitably spread out along each side. Sethian also describes why “rezoning” to 
keep points equidistant along the curve does not work; the interpolation required 
smooths the curve unconscionably. 
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3.2. The 1+4 Equation 

This section contains a derivation (based on [ 141) of the evolution equation 
(2.6.9) for the normal angle 4 on which our curve movement algorithm is based. 
Choose an arclength parametrization [9] x = x( t, S) of an infinite interface r(t), 
with s increasing as x increases, and with the special property that 

x,(t,s=0)~x,(t,s=O)=O (1) 

for each t. Thus we choose the point labelled by s = 0 to move always along the 
normal to the curve. Given any arclength parametrization, we can shift the origin 
of arclength (by solving an ordinary differential equation) so that (1) is satisfied; 
hence this choice of parametrization involves no loss of generality. Recall that the 
normal velocity V is defined by [54] 

v=x, .v, 

where 

is the unit normal to r(t). This fixes only one component of the vector x,. The 
other component, x, .z (where z = (x,, y,) is the tangent to r(t)), depends on the 
choice of parametrization. The special property (1) is enough to determine x, . z, 
and therefore the parametrization, as it turns out. Indeed, r is a unit vector, so 
asx, .z = a,(+~ .r) = 0, and thus 

d,r(xl . t) = asx, . z+x, .a,r= -cv, 

since d,F~ = - Cv and x, v = V. Hence integration and (1) imply 

x, .t= - 
s 

’ CVds’, 
0 

so x, is given by 

x, = V.v- 
s 

‘CVdsk 
0 

(2) 

The first term moves points along the normal with velocity V; the second slides 
points along the curve to conserve arclength. Take components to get the “X/Y 
equations” 

x, + VY.r + xs s ’ CVds’=O (3) o 

s 
s 

y, - vx, + ys CVds’=O. (4) 
0 

Here C = ySxss - x,~ Y,,~. 
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The X/Y equations have-for any V-a natural conserved quantity, the arclength 
deviation (or eikonal) 

Q = 1 - (x.A2 - (Y,)‘. 

A short calculation shows that (3) and (4) imply a conservation law 

&Q+&(Qj.;CVdJr)= -CVQ. 

This equation is linear in Q, so as long as CV is smooth, Q = 0 is the unique 
solution with initial values 0. Thus a parametrization which starts out as an exact 
arclength parametrization and evolves by the exact X/Y equations will remain an 
arclength parametrization. However, the nonzero right-hand side can cause 
exponential growth in a perturbation of Q. This is bad news for a numerical 
method based on the X/Y equations. 

However, we can take advantage of the conservation of Q to reduce the number 
of degrees of freedom of our system from 3 (x, y, and V) to 2, and conserve Q 
automatically at the same time. We eliminate the constrained variables x and y, in 
favor of unconstrained variables V and 4. To do this, introduce the normal angle 
4 by 

x, = cos $4, y, = -sin 4, (6) 

so that 4 is the angle between the normal v and the y-axis. Use (l), (3), and (4) 
to reconstruct x and y from 4 and I/ by integration, 

X(6 s) =x(0,0) + j; sin d( t’, 0) V( t’, 0) dt’ + ji cos $( t, s’) ds’ (7) 

Y(G s) = Y(O, 0) + j; cos I( t’, 0) V(t’, 0) dt’ - j: sin $( t, s’) ds’. (8) 

The curvature C is the derivative of 4 with respect to arclength: 

c= -x,y,, +x,,y, =a,d. 

Finally, to construct an evolution equation for 4, differentiate (3) and (4) with 
respect to S, use (6), and take sin 4 times the first of the resulting equations plus 
cos 4 times the second. The result is the “4 equation” 

a,#+a,v-+a,$ j’va,#ds’=o 
0 

(9) 

which will form the basis of our numerical method for moving curves. 
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EXAMPLE. Suppose V= 1 is constant. Corresponding to the ill-posed Cauchy- 
Riemann initial value problem for the X/Y equations, the 4 equation becomes 
Burgers’ equation 

a,4 + a,( &b’, = 0 

if 4 = 0 at s = 0, for example, if the curve is symmetric about x = 0. Thus even in 
the seemingly simple case when V is constant, we cannot expect global solutions. 

3.3. Keeping Track of Arclength 

A slight additional complication, present in the case when f(t) is periodic, is the 
need to keep track of arclength. Both the 4 equation (3.2.9) and the integral equa- 
tion (1.56) are to hold on the interval - co <s < co. As in Section 2.2, we want to 
reduce the problem to a finite interval by assuming that f(t) is periodic. This means 
that 

x(t, s + L(t)) = x(t, s) + 2x 

At, s + L(t)) = At, s), 
(1) 

where L(t) is the length of one branch of the interface, unfortunately not known a 
priori. Then we can sum under the integral as in Section 2.2 to get the periodic 
integral equation 

&,C+&vV+ U(x, Y, t)+J; jTI’, @(x-x’, t-t’)K(y-y’, t-t’)V’ds’dt’=O, (2) 

to hold for -L/2 <s < L/2. An easy calculation shows that L(t) satisfies the 
differential equation 

a,L=JL12 CVds; 
~ L/2 

thus the integral equation (2), the 4 equation (2.2.9), and (3) comprise a one-space- 
dimensional moving boundary problem. Fortunately, in one space dimension, 
moving boundaries can easily be removed by a stretching transformation which 
puts them into the coefficients of equations on a fixed domain. Thus put 

so that -rc<a<n, and let 

d(t, s) = 70,~) 
V(t, s) =g(t) Qt, a). 

(5) 
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It follows from (3) that g satisfies 

&g+g3m,io=o, 

where brackets denote the average 

(6) 

(7) 

We now drop tildes, in order to simplify the notation. 

3.4. The Numerical Method 

First, we summarize the system of equations to be solved. The (resealed) velocity 
satisfies a singular integral equation, 

, A 
+ IS 0(x - x’, t - t’) K( y - y’, t - t’) I/’ ds’ dt’ = 0. 

0 --II 

Here x and y are given by 

(1) 

x( t, s) = x(0,0) + i’ g( t’) sin d( t’, 0) V( t’, 0) dt’ 
0 

cos $( t, s’) ds’ (2) 

y( t, s) = ~(0, 0) + j; g( t’) cos cj( t’, 0) I’( t’, 0) dt’ 

(3) 

Note that the actual normal velocity of the curve is gV, since we resealed and 
dropped tildes. The curve is moved by calculating the normal angle 4 and the 
arclength ratio g from 

~a,~+~,v+a~~~~(va,)-<va,)i)d~‘=O (4) 
0 

a,g+ g3( va,(b> =o. (5) 

Now we introduce continuous piecewise linear approximations in the time 
variable for the primary variables V, 4, and g, and require Eq. (1 ), (4), and (5) to 
hold at the mesh points t = n At. We use the asymptotic value 

s 
7l 

0(x - x’, t - t’) K(y - y’, t - t’) I” ds’ 
-n 

- K( I/x - X’II, t - t’) gV(t’, s) (6) 
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in the single layer potential at the top time level r’ > t - dt. The resulting semi- 
discrete equations are 

gfl(d&Y a,& + Ev(i”) V”) + uxn, Y”, n At) 

+A,;:; j; jn, @(xn-xm+ys’), (n-m-a)At) 

xK(y”-y”+“(s’),(n-m-a)At) V”+“(s’)ds’da 

+At I ’ K(Ilx”-x”-’ lI,aAt) Vnp”g”-“da=O, 
0 

(7) 

and 

g”-g”-’ 

Al 
+ tgy3 ( vn a,dn) = 0. 

Here x and y are approximated by 

xn = xz + At ni’ 
WI=0 

Vrg” sin c&’ + _f_ j’ cos 4”(s) ds’ 
g” 0 

and 

n-l 

y” = yz + At 1’ 
l?l=O 

Vrg” cos &’ -’ js sin @‘(s’) ds’. 
g” 0 

(9) 

(10) 

(11) 

The subscript 0 on V and 4 indicates evaluation at s = 0, llxll is the Euclidean norm 
of the vector x, and the prime on the sum over m means that the first and last terms 
are to be halved. 

The top weight in the semidiscrete integral equation (7) can be evaluated exactly 
in terms of the error function, as in Setion 2. A tedious calculation gives 

(12) 
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where z = IJxn - x +‘j(/m and 

W2&)=erf(z,(:b+-$)+$(-)-$) 

IV,,(z)=erf(z)(&--$)+$$ 

2 
lV0,(Z,=erf(z)-4$e 

;( n 
f+& 

> 

(13) 

The other weights are computed by applying Gaussian quadrature in CI and the 
trapezoidal rule in s, as in Section 2. 

We could treat g differently: Introduce piecewise linear approximations only for 
V and d, and solve the g equation exactly by transforming it into 

which is linear in l/g’. The resulting equation for g can be used in the integral 
equation and the reconstruction of x and y. However, we can no longer evaluate 
the top weight in the integral equation exactly, and eliminating g eliminates only 
one of a large number of discrete degrees of freedom, so we defer this approach to 
future work. 

Next we discretize the curve. Let #j approximate 4(jds) and V, approximate 
V(jAs), with As = z/J and a positive integer J. Replace 8, with the discrete 
derivative D constructed in Section 2; 

where 

D,,c = 0, j= k. 

As we saw in Setion 2, this introduces a consistency condition 

J=At+co as J-r co, At -+O. (14) 

We usually satisfy this condition by taking J At = 1. 
The only new trick is in the construction of x and y from V and 4. The exact 

resealed equations (l), (4), and (5) have the natural invariant 

1 - g2((xJ2 + (YJ’) = 03 
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whose absolute constancy expresses conservation of arclength. We design our 
numerical method to conserve the analogous quantity 

( ) 
2 

Q=l- : ((x,-Xj-])2+(Yj- Y,- J2) 

by using the special numerical integration rule 

Y.i - Yo = *J$sini(#l+fj-,) 
g I 

(15) 

to compute x and y. Standard integration rules do not conserve Q, because they 
express x, - x, _, as a sum of cosines rather than as the cosine of a sum. 

Thus we have the discrete equations of motion 

gEC(4i) Ni + g&V(di) v, + u(x;, YL, n At) 

+At”~2AJ~~j’8(x,-x;1+~,(n-m-a)At) 
IX=0 -J 0 

XK(Yi - Y:+a, (n-m-a)At) v;:+xda 

+$ [W 2oz, I ( .) gv. + w (z.)(g-‘V, +gvy-‘) II I 

+ Wo2(z,)g”--‘v/:‘-‘]=O, (16) 

1 d;-@;-’ 
-3 g At 

+~~,+~~;As~‘(V~D~~-(VD$))=O, 
0 

g-gg”-’ 

At 
+g’(VDqb)=O. 

(17) 

Here zi = JIxi -x, +‘I[/@, the integral over a is approximated by Gaussian 
quadrature, W, are given in (13) 

x, =x0 “--‘+$(V,gsind+ VGP’g”P’sin&P’) 

+Fk$’ Cc+k +dk-I), (19) 

(20) 
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unsuperscripted variables are evaluated at time level n, and 

We impose periodic boundary conditions dJ = 4 _ J, VJ = VP J and initial condi- 
tions for V, 4, and g. 

The computational details are very like those mentioned in Section 2.5, except 
that precomputation of the O-function values is now impossible. However, the special 
feature which made Newton’s method attractive is still present; it 
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TABLE III 

Max-Norm Differences for Periodic Dendrite 

t 2ClO 40-20 8&40 1 O/2&20/40 

0.2 0.0093 0.0030 0.0018 0.0040 
0.4 0.0127 0.0067 0.0041 0.0056 
0.6 0.0184 0.0133 0.0078 0.0099 
0.8 0.0303 0.0234 0.0133 0.0166 
1.0 0.0506 0.0384 0.0211 0.0262 

Note. ~~=0.02,~~=0.01, A=0,5,k,=4, 6=0.05,go=0.05,q=q’=V=1. 

20/4@40/80 

0.0014 
0.0023 
0.0035 
0.0051 
0.0074 

do not quite attain second-order convergence. It is possible that the square-root 
singularity of K causes the convergence rate of the extrapolated solution to drop to 
O(413j2). Recall that our time discretization also appears to be of order O(dt312), 
perhaps for the same reason. At any rate, since the solution is of order unity, we 
have three good digits until t = 1. 

Total computing time was 40 min on a Cray X-MP, over 90% of which was 
spent in evaluating the single layer potential. Thus the history-dependence of the 
velocity equation dominates the computational cost; this results in cost O(N2J2Z) 
to compute until time T= N At with J points on the curve and Z-point Gaussian 
quadrature. 

A difficulty of the 4 equation approach is that the periodicity of the curve cannot 
be maintained exactly. In the above computations, for example, xJ differed from rr 
by several percent at t = 1.5. However, this difficulty is easily and naturally handled 
by resealing; we simply divide each x, by xJ. To keep the pictures properly scaled, 
we then must divide each yj by xJ as well. We do not use this resealing during the 
calculation, only when presenting graphical results. 

We proceed next to the long-time computation of an anisotropic dendrite. The 
same initial interface, with physical parameters 

E c = 0.04, E y = 0.02, A = 0.5, k, =4, 

develops the structure shown in Fig. 5. We used J= 40 points and N= 280 time 
steps, computing until time t = 7 and using symmetry as usual to reduce the cost. 
In the last few pictures, we believe the beginning of a sidebranching instability to 
be appearing. It is cut off by impact on the neighboring dendrite before real 

FIG. 4. Dendrite convergence study. Physical parameters: .sC = E y = 0.02, A = 0.5, k, = 4. Numerical 
parameters: J = 40, N = 60, I = 0, 0.75, 1.5. 
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FIG. 5. (a) Evolution of an anisotropic dendrite. Physical parameters: sC. = 0.04, .sV = 0.02, A = 0.5, 
k, =4, q = q’ = V= 1. Initial conditions: 6 =0.05, g, = 0.05. The numerical parameters are J=40, 
N=280, I= 10, and we compute up to time T= 7. On this page, pictures are spaced 30 time steps apart, 
because the dendrite moves very slowly at first. Each figure is numbered on the top with the time step. 
(b) Now the development picks up speed, and pictures are taken 10 time steps apart. (c), (d) Evolution 
of an anisotropic dendrite continued. 

sidebranch structure can develop, because of the periodicity of the calculation. Then 
the dendrites detach from their bases and the whole row of dendrites becomes a 
free-floating mass, separated from the ice below by a channel of water. (The last few 
pictures were resealed to fit on the page.) In the region at the base, the curve some- 
times crossed itself and formed a loop. When the sides of the curve left the channel 
available to them, they were modified for graphical purposes, by setting xi = 
min(x,, 7~). 

We might see a true sidebranch structure develop, if we used a finer mesh and 
a narrower initial bump. The length scale of the dendrite should be determined by 
the initial conditions, so a narrower initial bump is equivalent to increasing the 
periodicity of the calculation. As the period (here equal to 27~) goes to infinity, we 
should recover an isolated dendrite. However, this would require more mesh points; 
then we would have to increase the time step as well, so this would make the 
computation extremely expensive. 
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An unexpected feature of the numerical calculation is the rapid growth of the 
condition number K of the linear systems obtained by applying Newton’s method 
to (3.4.16) (3.4.19) and (3.4.20) which we write as a system 

F” 
F= F# =O, 

0 F, 

where F, = 0 is the velocity equation and so forth. Then 

K = cond(DF), = IIDFII 3c IIDFp’ll r, 

where DF is the Jacobian of F and IIA 11~ denotes the maximum row sum of the 
matrix A. Table IV exhibits K as a function of t and J, in the computation of Fig. 5. 
The growth with J is not surprising, because one term in DF is essentially the 
spatial derivative D, which approximates an unbounded operator as As + 0. The 
growth with t, on the other hand, is probably due to the breakdown of the 4 
equation formulation itself. The dendrite is clearly approaching its neighbor, and 
when they touch the parametrization can no longer be continuous. Instead, it must 
separate into two separate parts, each a continuous function on a separate interval. 
The 4 equation, on the other hand, can make sense only if 4 is no worse that a 
measurable function, so that cos 4 and sin 4 can exist. But then x and y are 
Lipschitz and hence continuous. Thus the 4 equation formulation breaks down 
when the curve crosses itself. 

The final set of figures (Fig. 6) show a dendrite with the same physical and 
numerical parameters as before, except that the Gibbs-Thomson relation has been 
made isotropic, with sC and sy equal to what were their minimum values in the 
previous calculation, .sC = 0.02, E y = 0.01. Note the qualitatively different appearance. 
The dendrite now grows into an almost circular shape, and only then does it 

TABLE IV 

Growth in Condition Number for 
An Anisotropic Dendrite 

t J= 10 J=20 /=40 

1.0 1 x lo2 2 x lo* 3x lo* 
2.0 1 x lo* 2 x lo* 4x lo2 
3.0 3 x lo* 7 x lo2 3 x 10) 
4.0 4x 10’ 2x lo4 6 x 10“ 
5.0 3 x lo4 7x lo4 3 x lo5 
6.0 6 x lo4 2 x lo5 6 x 10’ 
7.0 1 x lo5 2x lo5 1 x 106 

Note. c,.=O.O4, ey=0.02, A=O.S, k, =4, 6=0.05, 
go zo.05, y=y’= v= 1. 
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FIG. 6. (a) Evolution of an isotropic dendrite. Physical parameters: sc =0.02, sy =O.Ol, A =0, 
q= q’ = V= 1. Initial conditions: 6 = 0.05, g, =O.OS. The numerical parameters are J=40, N = 210, 
I= 10, and we compute up to time T= 5.25. We omit the first few frames, because they are 
indistinguishable from those of Fig. 5. (b), (c) Evolution of an isotropic dendrite continued. 

expand into a rectilinear shape filling the channel. A well-developed tip-splitting 
instability of the flat tip of the dendrite is then visible. Meiron [40] has exhibited 
very similar tip-splitting instabilities in an approximate steady state model. 
Nittmann and Stanley [43] also discuss connections between tip-splitting, 
sidebranching, and anisotropy, in a more general context. This computation failed 
at about t = 5.4, due to exponent overflow. We believe this happened because 40 
points is no longer sufficient to capture the structure at the center of the split, where 
a singularity seems to be forming. With only 40 points, smoothness cannot be 
maintained. Of course, it is also possible that the true solution itself blows up, in 
the sense that a real cusp develops at the split. Table V displays the condition 
number of the Jacobian as a function of t and .I. 

Each dendrite computation required about 2 h of CPU time on a Cray X-MP. 
Gaussian elimination with partial pivoting and iterative improvement solved the 
linear systems well (in Cray single-precision 1Cdigit arithmetic) despite the large 
condition numbers, and Newton’s method took less than five steps to reduce the 
residual below 10e6 at each time step. 
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TABLE V 

Growth in Condition Number 
of an Isotropic Dendrite 

1 .I= 10 J=20 J=40 

1.0 8 x 10’ 2x10* 3x lo2 
2.0 1 x IO' 2x lo* 5x IO2 
3.0 4 x 10’ 2 x lo1 8x 10’ 
4.0 5x 10’ 2 x lo4 6x lo4 
5.0 2x lo4 8 x 10“ 3 x lo5 
6.0 2x lo4 (1 n 

7.0 3x lo4 (1 ” 

Nofe. eC =0.04, i:v ~0.02, A =O, 6 =0.05, go =0.05, 
q=q'= V=l. 

(1 The calculation blew up at t = 5.4 for J= 20 and 
t = 5.3 for J = 40; the condition number at blowup was 
in each case 9 x 105. 

4. DISCUSSION AND CONCLUSIONS 

We have presented a numerical method for solving the supercooled Stefan 
problem with an anisotropic curvature- and velocity-dependent temperature 
boundary condition imposed on the moving boundary. We simplify the problem by 
eliminating the temperature field; thus only the moving boundary need be 
computed. We compute the normal velocity by solving a singular integral equation 
on the moving boundary and move the curve by solving an evolution equation for 
the normal angle. An additional ordinary differential equation is solved for the 
arclength. 

Our numerical method turns out to be stable, first-order accurate, and fairly 
expensive-though the high cost may be unavoidable given the intrinsic difficulty 
of the problem. The method costs 

O(AvZ) + O(NJ3) 

arithmetic operations to compute up to a fixed time T= N dt, with time step At, 
.Z points on the curve, Z Gaussian quadrature points per weight, and .Z At = 1. The 
first term, due to the history-dependence of the single layer potential, dominates in 
practice. 

The method exhibits an O(At) convergence rate, which compares favorably with 
the O(At”*) or worse of weak solution methods for classical Stefan problems (i.e., 
without curvature-dependence or supercooling). Furthermore, this method avoids 
“grid effects” which contaminate weak solution methods and prevent Richardson 
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extrapolation to higher order. Grid effects are avoided by computing only the 
moving boundary and eliminating the temperature field. 

Our numerical results agree with the linear stability theory based on the integral 
equation formulation. Previous authors have not obtained agreement between 
numerical results and the classical theory because their numerical results are 
contaminated by grid effects and because the classical theory is incorrect in the 
short-time regime, which is the only regime where linear theory can be expected to 
be accurate. For longer time spans, the classical theory is asymptotically correct, 
but linearized theory breaks down, because perturbations grow. 

Our velocity calculation algorithm is constructed by studying the special case 
when the boundary is a graph. As far as the velocity is concerned, this situation 
already presents all the difficulties: The singularity of the kernel, the consistency 
condition for numerical integration over the curve, and the discretization of 
curvature can all be understood in this special case. 

The general case, when the boundary is not the graph of a single-valued function, 
requires a reformulation of the general problem of how to move a curve with a 
given curvature-dependent velocity. Methods which move points only along the 
normal fail: Points along the side of a bump spread apart, causing loss of accuracy, 
whereas points in other areas move too close together, requiring expensively small 
time steps to maintain numerical stability. 

Thus we turn to a different formulation of curve movement, based on the “4 
equation.” This formulation takes V and C$ as primary variables, reconstructing x 
and y only when needed. Thus arclength is automatically conserved in the exact 
equation. The numerical method then requires a special integration rule to evaluate 
x and y, in order to preserve the numerical equivalent of arclength. Taking V and 
4 as primary variables amounts to computing time and space derivatives of the 
prametrization, and therefore ensures smoothness of the resulting curve. 

We worked with a spatially periodic curve, to simplify the boundary conditions, 
but this is not at all necessary. Our curve movement algorithm is quite general: it 
applies without change to any periodic curve movement problem, and appropriate 
fictitious boundary conditions would permit its extension to almost any curve. 

The velocity calculation algorithm seems quite special to the Stefan problem; it 
depends on being able to reduce the equations determining the normal velocity to 
equations on the interface. Nevertheless, this approach naturally extends to solve a 
number of other problems, for example, the supercooled Stefan problem with the 
heat equation 8,~ = du replaced by the steady state heat equation (in a moving 
frame), du + V~,U = 0, in each phase. This approximation assumes that the 
temperature field relaxes quickly compared to the movement of the interface. The 
steady state heat equation makes the problem much easier to solve numerically, 
because the single layer potential is no longer history-dependent. Thus this 
modification of the problem would eliminate the need to store previous locations of 
the interface and reduce the cost of the method to 

O(fvJ) + O(NJ3); 

581/X5/2-9 
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the second term, the cost of Gaussian elimination, would presumably dominate in 
this case. Even so, we could expect a great decrease in computational cost. A 
difficulty in this formulation, however, is the choice of the constant I’. If the tip of 
a dendrite were known to move with constant velocity, the tip velocity would be 
a natural choice of V. Unfortunately, this is not known, so V is an adjustable 
parameter in the theory. 

Another interesting problem is to compute an infinite dendrite; much recent work 
[34,40] has been devoted to this, but many important questions of pattern forma- 
tion and velocity selection remain unanswered. The extension of our method to this 
case should be straightforward, requiring only fictitious boundary conditions to 
truncate the infinite curve. 
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